Elevational Shifts of Freshwater Communities Cannot Catch up Climate Warming in the Himalaya

نویسندگان

  • Fengqing Li
  • Narayan Shah
  • Steffen U. Pauls
  • Xiaodong Qu
  • Qinghua Cai
  • Ram Devi Tachamo Shah
  • Kevin B. Strychar
چکیده

Climate warming threatens biodiversity at global, regional and local levels by causing irreversible changes to species populations and biological communities. The Himalayan region is highly vulnerable to climate warming. This calls for efficient environmental management strategies because biodiversity monitoring is costly, particularly for the developing countries of the Himalaya. Species distribution modeling (SDM) represents a tool that can be used to identify vulnerable areas where biodiversity monitoring and conservation are required most urgently and can be prioritized. Here, we investigated the potential present-day community compositions of river invertebrates in the central and eastern Himalayas and predicted changes in community compositions in future decades using SDMs. We then quantified the climate-induced range shifts of benthic invertebrates along the elevational gradient and tested whether the predicted community shift is fast enough to fully compensate for the projected climate warming. Our model predicts future increases in benthic invertebrate taxonomic richness. Further, projected community shifts are characterized by the movement of warm-dwellers to higher elevations and losses in cold-dwellers. The predicted model shows that benthic invertebrate communities would not be able to compensate climate warming through uphill migration and thus would accumulate climatic debts. Our findings suggest that the ongoing warming effect would cause continued elevational range shifts of mountain river communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre

Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species' response to clima...

متن کامل

Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure.

Both tropical and temperate species are responding to global warming through range shifts, but our understanding of the consequences of these shifts for whole communities is limited. Here, we use current elevational range data for six taxonomic groups spanning 90° in latitude to examine the potential impacts of climate-driven range shifts on community change, or 'disassembly', across latitude. ...

متن کامل

Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited

Models analyzing how Southwestern plant communities will respond to climate change predict that increases in temperature will lead to upward elevational shifts of montane species. We tested this hypothesis by reexamining Robert Whittaker's 1963 plant transect in the Santa Catalina Mountains of southern Arizona, finding that this process is already well underway. Our survey, five decades after W...

متن کامل

Climate change, elevational range shifts, and bird extinctions.

Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of...

متن کامل

Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016